WEEKLY TEST MEDICAL PLUS -03 TEST - 03 RAJ PUR SOLUTION Date 04-08-2019

[PHYSICS]

1. From figure, $\vec{d}+\vec{e}=\vec{f}$

2. If \vec{C} is resultant of \vec{A} and \vec{B}, then

$$
\begin{aligned}
& |\vec{C}|=\sqrt{A^{2}+B^{2}+2 A B \cos 120^{\circ}} \\
& |\vec{C}|=\sqrt{A^{2}+B^{2}-A B} \quad\left[\text { As } \cos 120^{\circ}=-\frac{1}{2}\right]
\end{aligned}
$$

Similarly,

$$
\begin{gathered}
|\vec{A}-\vec{B}|=\sqrt{A^{2}+B^{2}-2 A B \cos 120^{\circ}} \\
=\sqrt{A^{2}+B^{2}+A B} \\
|\vec{A}-\vec{B}|>C
\end{gathered}
$$

3. Magnitude of component of \vec{A} along $\vec{B}=\frac{\vec{A} \cdot \vec{B}}{|\vec{B}|}$

$$
\begin{aligned}
& =\frac{(2 \hat{i}+3 \hat{j}) \cdot(\hat{i}+\hat{j})}{\sqrt{2}} \\
& =\frac{2+3}{\sqrt{2}}=\frac{5}{\sqrt{2}} .
\end{aligned}
$$

4.
5.
6. When tow vectors are paralel to each other, their cross product is zero.

$$
\vec{A} \times \vec{C}=0
$$

$\therefore \quad \vec{A}$ and \vec{C} are parallel to each other.
7.

$$
\left.\begin{array}{rlrl}
& & |\vec{A} \times \vec{B}| & =\sqrt{3} \vec{A} \cdot \vec{B} \\
& \therefore & A B \sin \theta & =\sqrt{3} A B \cos \theta \\
& \text { or } & & \tan \theta
\end{array}=\sqrt{3} \text { or } \theta=60^{\circ}\right\}
$$

8. The sum of two vectors is $\vec{R}=\vec{A}+\vec{B}$. The difference of two vectors is $\overrightarrow{R^{\prime}}=\vec{A}-\vec{B}$. Since, \vec{R} and $\overrightarrow{R^{\prime}}$ are at right angles, therefore, their dot product is zero.
i.e., $\quad \vec{R} \cdot \overrightarrow{R^{\prime}}=0 \quad$ or $(\vec{A}+\vec{B}) \cdot(\vec{A}-\vec{B})=0$
or $\quad \vec{A} \cdot \vec{A}-\vec{A} \cdot \vec{B}+\vec{B} \cdot \vec{A}-\vec{B} \cdot \vec{B}=0$
or

$$
\begin{aligned}
A^{2}-\vec{A} \cdot \vec{B}+\vec{A} \cdot \vec{B}-B^{2} & =0 \\
A^{2}-B^{2} & =0 \\
A & =B .
\end{aligned}
$$

or
or

$$
+5 \hat{k}=-a \hat{k}
$$

$$
a=-5
$$

10.

$$
\begin{array}{ll}
& |\vec{A} \times \vec{B}|=\sqrt{3}(\vec{A} \cdot \vec{B}) \\
\therefore & A B \sin \theta=\sqrt{3} A B \cos \theta \\
\text { or } & \tan \theta=\sqrt{3} \quad \text { or } \quad \theta=\tan ^{-1} \sqrt{3}=60^{\circ} .
\end{array}
$$

11.

$$
\begin{aligned}
& \vec{a}=2 \hat{i}+3 \hat{j}+8 \hat{k} \\
& \vec{b}=4 \hat{j}-4 \hat{i}+\alpha \hat{k}
\end{aligned}
$$

If \vec{a} is \perp to \vec{b}, then $\vec{a} \cdot \vec{b}=0$
or

$$
(2 \hat{i}+3 \hat{j}+8 \hat{k}) \cdot(-4 \hat{i}+4 \hat{j}+\alpha \hat{k})=0
$$

or $\quad(-8+12+8 \alpha)=0$
or

$$
\alpha=-\frac{1}{2}
$$

12.

$$
\vec{S}=\vec{F}_{1}+\vec{F}_{2} \quad \text { and } \quad \vec{D}=\vec{F}_{1}-\vec{F}_{2}
$$

As two vectors are perpendicular to each other, hence $\vec{S} \cdot \vec{D}=0$
or $\quad\left(\vec{F}_{1}+\vec{F}_{2}\right) \cdot\left(\vec{F}_{1}-\vec{F}_{2}\right)=0$
or $\quad\left(\vec{F}_{1}\right)^{2}-\left(\vec{F}_{2}\right)^{2}=0$
or

$$
\left|\vec{F}_{1}\right|^{2}-\left|\vec{F}_{2}\right|^{2}=0
$$

or

$$
\left|\vec{F}_{1}\right|^{2}=\left|\vec{F}_{2}\right|^{2}
$$

$$
\left|\vec{F}_{1}\right|=\left|\vec{F}_{2}\right|
$$

13.
14. \quad Given first vector $(P)=A$

Second vector $(Q)=A$
resultant vector $(R)=A$
Now,

$$
\begin{aligned}
& R=\sqrt{P^{2}+Q^{2}+2 P Q \cos \theta} \\
& A=\sqrt{A^{2}+A^{2}+2 A^{2} \cos \theta}
\end{aligned}
$$

$$
\text { or } \quad A=\sqrt{2 A^{2}(1+\cos \theta)}
$$

$$
\text { or } \quad A^{2}=2 A^{2}(1+\cos \theta)
$$

$$
\text { or } \quad \cos \theta=-\frac{1}{2}
$$

$$
\text { or } \quad \theta=120^{\circ} \text {. }
$$

15. \vec{P} is perpendicular to $\vec{Q} \times \vec{P}$. The dot product of perpendicular vector is zero.
16. $\quad \cos \theta=\frac{\vec{A} \cdot \vec{B}}{A B}=\frac{2(-3)+3 \times 0+1 \times 6}{\sqrt{14} \times \sqrt{45}}$
$\therefore \quad \theta=90^{\circ}$
17.
18.
19. $\vec{C}=\vec{A}+\vec{B}$ gives;

$$
\begin{array}{rlrl}
& & C^{2} & =A^{2}+B^{2}+2 A B \cos \theta \\
\text { But } & C^{2} & =A^{2}+B^{2} \\
\therefore & 2 A B \cos \theta & =0 \\
& \text { or } & \cos \theta & =0, \quad \theta=\frac{\pi}{2} .
\end{array}
$$

20. Here, $\vec{A}=\vec{B}+\vec{C}$

Let angle between \vec{B} and \vec{C} be θ; then

$$
\begin{aligned}
A^{2} & =B^{2}+C^{2}+2 B C \cos \theta \\
(5)^{2} & =4^{2}+3^{2}+2(4)(3) \cos \theta \\
0 & =24 \cos \theta, \quad \theta=\frac{\pi}{2}
\end{aligned}
$$

or

In the right angled triangle, let the angle between
\vec{A} and \vec{C} be α.
$\therefore \quad \cos \alpha=\frac{C}{A}=\frac{3}{5}$
$\therefore \quad \alpha=\cos ^{-1}(3 / 5)$.
21. $R^{2}=P^{2}+Q^{2}+2 P Q \cos \theta$

Here, $\quad|\vec{R}|=|\vec{Q}|=|\vec{P}|$
$\therefore \quad P^{2}=P^{2}+P^{2}+2 P P \cos \theta$
or $\quad P^{2}=2 P^{2}+2 P^{2} \cos \theta$
or $\quad P^{2}=2 P^{2}(1+\cos \theta)$
or

$$
\frac{1}{2}=1+\cos \theta
$$

or

$$
\cos \theta=-\frac{1}{2} \quad \therefore \theta=120^{\circ} \text {. }
$$

22. $|\vec{F}|=\sqrt{6^{2}+8^{2}+10^{2}}=\sqrt{200}$

$$
=10 \sqrt{2} \mathrm{~N}
$$

Hence, $m=\frac{F}{a}=\frac{10 \sqrt{2} \mathrm{~N}}{1}=10 \sqrt{2} \mathrm{~kg}$.
23.

$$
\begin{aligned}
\vec{\tau} & =\vec{r} \times \vec{F} \\
& =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
7 & 3 & 1 \\
-3 & 1 & 5
\end{array}\right|=\hat{i}(15-1)-\hat{j}(35+3)+\hat{k}(7+9) \\
& =14 \hat{i}-38 \hat{j}+16 \hat{k} .
\end{aligned}
$$

24. Here, $P^{2}+Q^{2}=R^{2}$

$$
(5)^{2}+(12)^{2}=(13)^{2}
$$

\therefore Angle between P and $Q=90^{\circ}$, if α is the angle
between Q and R; then $\cos \alpha=\left(\frac{12}{13}\right)$.
25. $\quad(0.5)^{2}+(0.8)^{2}+\mathrm{C}^{2}=1$
$\mathrm{C}^{2}=1-(0.5)^{2}-(0.8)^{2}=1-0.25-0.64$
$=1-0.89=0.11$
$\therefore \quad C=\sqrt{0.11}$
26. Component of \vec{A} along

AVIRAL CLASSES
 creating scholars

```
\(=(A \cos \theta) \hat{B}(\vec{A} \cdot \hat{B}) \hat{B}=\frac{(\vec{A} \cdot \vec{B}) \vec{B}}{B^{2}}\)
\(\vec{A} \cdot \vec{B}=(3 \hat{i}+4 \hat{j}) \cdot(\hat{i}+\hat{j})=7\)
\(\vec{B}=\hat{i}+\hat{j}\)
or \(\quad B^{2}=2\)
```

27. Actually $\overrightarrow{\mathrm{P}}+\overrightarrow{\mathrm{Q}}$ and $\overrightarrow{\mathrm{P}}-\overrightarrow{\mathrm{Q}}$ represent the two diagonals of the parallelogram whose any two concurrent side are represented by \vec{p} and \vec{Q}. The angle between the diagonals can have any value between 0° and 180°
28. If $|\vec{A}+\vec{B}|=|\vec{A}-\vec{B}|$, the two vectors \vec{A} and \vec{B} must be perpendicular to each other.
29. Here, $\vec{A}+\vec{B}=-\vec{C}$

Hence, $|\vec{A}+\vec{B}|=|-\vec{C}|=|\vec{C}|$
30. The dot product of two vectors cannot be equal to the dot product of their unit vectors.
31. Two vectors of equal magnitude and directed in opposite directions give zero resultant.
33. For normal vectors, $\vec{A} \cdot \vec{B}=0$. This is the case with the vector in option (c)
$(\hat{i} A \cos \theta+\hat{j} A \sin \theta) \cdot(\hat{i} B \sin \theta-\hat{j} B \cos \theta)=A B \sin \theta \cos \theta-A B \sin \theta \cos \theta=0$
34. Components of water depend on the choice of coordinate system.
35. Vector perpendicular to $\hat{i}+\hat{j}$ is $\hat{i}-\hat{j}$.

Here $\vec{A}=3 \hat{i}+4 \hat{j}$ and $\vec{B}=\hat{i}-\hat{j}$
$\therefore \quad \vec{A} \cdot \vec{B}=3-4=-1$
$\vec{B}=\hat{i}-\hat{j}$
and $\mathrm{B}^{2}=2$
36.
$C=\left[A^{2}+B^{2}+2 A B \cos \frac{2 \pi}{3}\right]^{1 / 2}$
$=\left[A^{2}+B^{2}+2 A\left(-\frac{1}{2}\right)\right]^{1 / 2}=A=B$
37. $\vec{A} \times \vec{B}$ is directed opposite to $\vec{B} \times \vec{A}$.
38. Projection of \vec{A} on y-axis is given by $\vec{A} . \hat{j}$. Here, $(3 \hat{i}+4 k) \cdot \hat{j}=0$
39. Projection of \vec{A} on \vec{B} is the dot product of \vec{A} and the unit vector along \vec{B}.
40. Any one of them is equally possible. Hence, none of the given options is necessarily valid.
41. $\tan \alpha=\frac{B \sin \theta}{A+B \cos \theta}=\frac{\sin \theta}{\frac{A}{B}+\cos \theta}$ and $\tan \beta=\frac{A \sin \theta}{B+A \cos \theta}=\frac{\sin \theta}{\frac{B}{A}+\cos \theta}$
$\therefore \quad \alpha<\beta$ when $\frac{A}{B}>1$
This will make $\frac{B}{A}<1$
42. $\tan \beta=\frac{B \sin \theta}{A+B \cos \theta}$
or $\tan 90^{\circ}=-\frac{B \sin \theta}{A+B \cos \theta}$
$\therefore \quad A+B \cos \theta=0$
or $\quad \theta=\cos ^{-1}\left(-\frac{A}{B}\right)$
43. $\quad \vec{A}=A \hat{A}$
$\therefore \quad \Delta \overrightarrow{\mathrm{A}}=(\Delta \mathrm{A}) \hat{\mathrm{A}}+(\Delta \hat{\mathrm{A}}) \mathrm{A}$
When $\Delta \hat{\mathrm{A}}=0$
Then $\Delta \vec{A}=(\Delta A) \hat{A}=(\Delta|\vec{A}|) \hat{A}$
$\therefore \quad|\Delta \overrightarrow{\mathrm{A}}|=\Delta|\hat{\mathrm{A}}|$
$\Delta \vec{A}=-\vec{A}-\vec{A}=-2 \vec{A}$
Now as $|\vec{A}|=|-\vec{A}|$
$\therefore \quad \Delta|\overrightarrow{\mathrm{A}}|=0^{\circ}$.
45.
$\vec{\Delta} r=\vec{r}_{2}=\vec{r}_{1}, \quad\left(\right.$ where $\left.r_{2}=r_{1}=r\right)$
Hence, $\Delta r=\sqrt{r_{2}^{2}+r_{1}^{2}-2 r_{2} r_{1} \cos \theta}$
$=2 r \sin \frac{\theta}{2}$

[CHEMISTRY]

46.

Mass of an electron $=9.108 \times 10^{-31} \mathrm{~kg}$
Number of electrons in $1 \mathrm{~kg}=\frac{1}{9.108 \times 10^{-31}}$
Number of moles of electrons in 1 kg
$=\frac{1}{9.108 \times 10^{-31} \times 6.023 \times 10^{23}}=\frac{\mathbf{1 \times 1 0} \mathbf{1 0}^{8}}{\mathbf{9 . 1 0 8} \times \mathbf{6 . 0 2 3}}$
(a) $10 \mathrm{~g} \mathrm{O}_{2}=\frac{\mathbf{6 . 0 2 3} \times \mathbf{1 0}^{\mathbf{2 3}} \times \mathbf{1 0}}{\mathbf{3 2}}$ molecules
(b) $15 \mathrm{~L} \mathrm{H}_{2}=\frac{\mathbf{6 . 0 2 3} \times \mathbf{1 0}^{\mathbf{2 3}} \times \mathbf{1 5}}{\mathbf{2 2 . 4}}$ molecules $($ Largest $)$
(c) $5 \mathrm{~L} \mathrm{~N}_{2}=\frac{\mathbf{6 . 0 2 3} \times \mathbf{1 0}^{\mathbf{2 3}} \times \mathbf{5}}{\mathbf{2 2 . 4}}$ molecules
(d) $0.5 \mathrm{~g} \mathrm{H}_{2}=\frac{\mathbf{6 . 0 2 3} \times \mathbf{1 0}^{\mathbf{2 3}} \times \mathbf{0 . 5}}{\mathbf{2}}$ molecules
48.

Number of electrons involved in the redox reaction is five.
Therefore, equivalent weight is M/5.
49.

Concentration of $\mathrm{Na}_{2} \mathrm{CO}_{3}=\frac{25.3}{250} \times 1000=101.2 g \mathrm{~L}^{-1}$
$=\frac{101.2}{106} \mathrm{~mol} \mathrm{~L}^{-1}=0.9547 \mathrm{~mol} \mathrm{~L}^{-1}$
\therefore Conc. of Na^{+}ion $=2 \times 0.9547=1.91 \mathrm{M}$
Conc. of CO_{3}^{2-} ion $=\mathbf{0 . 9 5 5} \mathbf{~ M}$
50.
$44 \mathrm{~g} \mathrm{CO}_{2}=1 \mathrm{~mol}=6.02 \times 10^{23}$ molecules
$48 \mathrm{~g} \mathrm{O}_{2}=\frac{48}{32}=1.5 \mathrm{~mol}=1.5 \times 6.02 \times 10^{23}$ molecules
$8 \mathrm{~g} \mathrm{H}_{2}=\frac{8}{2}=4 \mathrm{~mol}=4 \times 6.02 \times 10^{23}$ molecules
$64 \mathrm{~g} \mathrm{SO}_{2}=\frac{64}{32}=2 \mathrm{~mol}=2 \times 6.02 \times 10^{23}$ molecules
$\therefore 8 \mathrm{~g} \mathrm{H} \mathrm{H}_{2}$ has maximum number of molecules.
51.

Number of moles in 0.018 g water $=\frac{0.018}{18}=1 \times 10^{-3}$ moles
\therefore Number of molecules in 10^{-3} moles $=\mathrm{N}_{\mathrm{A}} \times 10^{-3}$.

$$
=6.022 \times 10^{23} \times 10^{-3}=\mathbf{6 . 0 2 2} \times \mathbf{1 0}^{\mathbf{2 0}}
$$

52.

Thus, 100 g of pure CaCO_{3} gives 1 mol or 6.023×10^{23} molecules
1 mg or $10^{-3} \mathrm{~g}$ of pure CaCO_{3} gives
53.

$$
\underset{\substack{\mathrm{M}_{1} \mathrm{~V}_{1} \\ \text { (Original) }}}{5 \times \underset{\text { (Diluted) }}{\mathrm{M}_{2} \mathrm{~V}_{2}}} \underset{5 \times 1}{\mathrm{M}_{2} \times 10}
$$

$\mathrm{M}_{2}=\frac{5}{10}=0.5 \mathrm{M}=\mathbf{1 N} \quad\left[\because \mathrm{H}_{2} \mathrm{SO}_{4}\right.$ is a dibasic acid $]$

AVIRAL CLASSES

CREATING SCHOLARS

Let the mass of oxygen be $x g$ and that of nitrogen be $4 x g$
Number of molecules of $\mathrm{O}_{2}=\frac{x}{32} \times \mathrm{N}_{\mathrm{A}}$
Number of molecules of $\mathrm{N}_{2}=\frac{4 x}{28} \times \mathrm{N}_{\mathrm{A}}$
Ratio of the number of molecules $=\frac{x}{32}: \frac{4 x}{28}$
or $\quad \frac{x}{32}: \frac{x}{7}$ or $\mathbf{7 : 3 2}$
55.

$448 c c$ of CO_{2} is given by metal carbonate $=2 \mathrm{~g}$
$22400 c c$ of CO_{2} is given by metal carbonate

$$
=\frac{2}{448} \times 22400 g=100 g
$$

\therefore Mol mass of $\mathrm{MCO}_{3}=100$
or $\mathrm{M}+60=100$ or atomic mass of metal $=100-60=40$
Eq. mass of metal $=\frac{40}{2}=\mathbf{2 0}$
56.

The given configuration represents the ground state of Cr .
57.

Angular momentum $=\sqrt{l(l+1)} \frac{h}{2 \pi}$
For s-orbital, $l=0$
\therefore Angular momentum $=$ zero
58.

$$
\lambda=\frac{h}{m v}=\frac{6.63 \times 10^{-34} \mathrm{~kg} \mathrm{~m}{ }^{2} \mathrm{~s}^{-1}}{65 \times 10^{-3} \mathrm{~kg} \times m s^{-1}}=\mathbf{1 . 0 2} \times \mathbf{1 0}^{-\mathbf{3 3}} \mathbf{m}
$$

59.

The third line from the red end corresponds to yellow re-
gion, i.e., $n_{2}=5$.
Thus, transition will be from $n_{2}(=5)$ to $n_{1}(<5)$.
60.

$$
\begin{aligned}
\mathrm{E}_{1} & =-2.18 \times 10^{-18} \mathrm{~J} \text { atom }^{-1} \\
\mathrm{E}_{4} & =\frac{-2.18 \times 10^{-18}}{4} \mathrm{~J} \mathrm{atom}^{-1} \\
v & =\frac{\mathrm{E}_{4}-\mathrm{E}_{1}}{h}=\frac{2.18 \times 10^{-18}}{6.625 \times 10^{-34}}\left(1-\frac{1}{16}\right) \\
& =\frac{2.18 \times 10^{-18}}{6.625 \times 10^{-34}} \times 0.9375=\mathbf{3 . 0 8} \times \mathbf{1 0}^{\mathbf{1 5}} \mathrm{s}^{\mathbf{- 1}}
\end{aligned}
$$

61.

$$
\begin{aligned}
& \mathrm{E}_{2}=\frac{\mathrm{E}_{1}}{(2)^{2}} ; \quad \therefore \mathrm{E}_{1}=-328 \times 4=-1312 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& \mathrm{E}_{4}=-\frac{1312}{(4)^{2}}=-\mathbf{8 2} \mathbf{~ k J ~ m o l}
\end{aligned}
$$

AVIRAL CLASSES

creating scholars
65.

$$
\begin{aligned}
& \text { K.E. }=\frac{1}{2} m v^{2} \\
& v^{2}=\frac{2 \times \text { K.E. }}{m} ; v=\sqrt{\frac{2 \times \mathrm{K} . \mathrm{E} .}{m}} \\
& \lambda=\frac{h}{m v}=\frac{h}{m} \times \sqrt{\frac{m}{2 \times \mathrm{K} . \mathrm{E} .}} \\
& =\frac{h}{\sqrt{m \times 2 \times \mathrm{K} . \mathrm{E} .}}=\frac{6.625 \times 10^{-34}}{\sqrt{1 \times 2 \times 0.5}}=\mathbf{6 . 6 2 5} \times \mathbf{1 0}^{-34} \mathbf{m}
\end{aligned}
$$

66.

For H -like particles,
$\begin{aligned} r_{n} & =\frac{a_{0} n^{2}}{\mathrm{Z}}=\frac{0.59 \AA \times(3)^{2}}{2}\left[n=3, \mathrm{Z}=2 \text { for } \mathrm{He}^{+}\right] \\ & =\mathbf{2 . 3 8} \AA\end{aligned}$
68. By law of conservation of momentum
$0=m_{1} \overrightarrow{v_{1}}+m_{2} \overrightarrow{v_{2}} \Rightarrow m_{1} \overrightarrow{v_{1}}=-m_{2} \overrightarrow{v_{2}}$
$-v e$ sign indicates that both he particles are moving in opposite direction. Now de-Broglie wavelengths

$$
\lambda_{1}=\frac{\mathrm{h}}{\mathrm{~m}_{1} \mathrm{v}_{1}} \text { and } \lambda_{2}=\frac{\mathrm{h}}{\mathrm{~m}_{2} \mathrm{v}_{2}} ; \therefore \frac{\lambda_{1}}{\lambda_{2}}=\frac{\mathrm{m}_{2} \mathrm{v}_{2}}{\mathrm{~m}_{1} \mathrm{v}_{1}}=1
$$

69. $\quad \lambda_{\text {photon }}=\frac{\mathrm{hc}}{\mathrm{E}}$ and $\lambda_{\text {proton }}=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mE}}}$
$\Rightarrow \frac{\lambda_{\text {photon }}}{\lambda_{\text {electron }}}=c \sqrt{\frac{2 m}{E}} \Rightarrow \frac{\lambda_{\text {photon }}}{\lambda_{\text {electron }}} \propto \frac{1}{\sqrt{\mathrm{E}}}$
70. Photo current (I) directly proportional to light intensity ($($) falling on a photosensitive plate. $\Rightarrow \mathrm{i} \propto \mathrm{I}$
71. According to Einstein's equation
$h n=W_{0}+K_{\max } \Rightarrow \mathrm{V}_{0}=\left(\frac{\mathrm{h}}{\mathrm{e}}\right) v-\frac{\mathrm{W}_{0}}{\mathrm{e}}$
This is the equation of straight line having positive slope (h / e) and intercept on $-V_{0}$ axis, equals to $\frac{\mathrm{W}_{0}}{\mathrm{e}}$
72. Stopping potential does not depend upon intensity of incident light (Λ).
73. By using $\frac{1}{\lambda}=\mathrm{R}\left[\frac{1}{\mathrm{n}_{1}^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}\right]$
